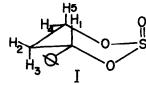
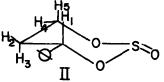

STEREOCHEMISTRY OF 4-PHENYLTRIMETHYLENE SULFITES. A REINVESTIGATION G.W. Buchanan*, C.M.E. Cousineau and T.C. Mundell Dept. of Chemistry, Carleton University Ottawa, Ontario, Canada, K1S 5B6

(Received in USA 17 February 1978; received in UK for publication 1 June 1978)

In 1972, the conformational analysis, by 1 H NMR, of a material, purported to be 4-phenyltrimethylene sulfite (below), was published.⁽¹⁾ This material, a liquid, was purified




by gas chromatography and characterized only by its boiling point. It was stated that the 1 H NMR analysis gave results "unexpected for a chair conformation or a chair-chair equilibrium" and a twist conformation was proposed. The spectrum of the neat liquid was analyzed, although earlier it had been demonstrated⁽²⁾ that trimethylene sulfites experience strong self association, are likely to be dimers at high solute concentration.

A further puzzling feature⁽¹⁾ was that no allusion was made to the fact that <u>two</u> isomers are possible for 4-phenyltrimethylene sulfite. We now report the synthesis of both isomers of this material and their stereochemical analysis via ¹H and ¹³C NMR.

Synthesis of a mixture of the isomeric 4-phenyltrimethylene sulfites I and II, was accomplished by treatment of 1-phenyl-1,3-propanediol with SOCl₂ in dry ether containing excess pyridine ⁽³⁾. Following standard workup, ⁽³⁾ the mixture was chromatographed on silica gel using benzene as eluent. Initial fractions contained a liquid isomer I, $n_D^{25} = 1.5458$, followed by a white solid, II, m.p. 60-61°C. IR spectra of I and II showed characteristic sulfinyl stretching at 1190 and 1210 cm⁻¹respectively. Both compounds gave satisfactory elemental analysis and mass spectra.

We formulate I and II as chair forms, based on 1 H and 13 C NMR data, obtained using

0.1 M solutions in CDCl_3 , on a Varian XL-100-12 NMR spectrometer. ¹H spectra were analyzed via the LAOCN3 program and fitted to an RMS error of ±0.1. Phenyl regions were not analyzed. ¹H results are presented in Tables 1 and 2, and those for Albriktsen's material "X" are included for comparison.

	Tabl	le 1.	<u>H</u>	chem	í cal	shifts	(S from	TMS	± 0	<u>.1)</u>	
Compd	<u>H-1</u>		<u>H-2</u>	<u>H</u> .	-3	<u>H-4</u>	<u>H-5</u>			<u>¢</u>	
I	5.9	3	1.78	2.4	48	3.92	5.09		(7.:	30)	
II	5.43		1.90	2.3	37	4.54	4.54		(7.4	40)	
"X" ⁽¹⁾	⁾ 4.99	9	2.12	2.3	29	3.29	3.48		Not	reported ⁽	1)
			Table	2.	1 _{H-}	¹ H J's ((Hz ± 0.)	1)			
Compd	<u>J</u> 12	<u>J</u> 13	<u>.</u>	23	<u>J</u> 2,	4 <u>J</u> 25	<u>J</u> 34	<u>J</u> 3		<u>J</u> 45	
I	2.6	12.5	-1	4.6	1.0	6 2.6	4.7	11.	8	-12.2	
II	2.7	11.5	-1	4.1	1.9	9 3.2	4.7	11.	5	-12.1	
"χ"(1)	5.6	8.3	-1	4.8	6.	0 4.6	5.5	9.	1	-11.1	

1

Clearly, results for our liquid isomer I are at great variance with those for the liquid "X". The differential shifts between I and II are consistent with previously noted⁽⁴⁾ trends in chair sulfites. An axial S = 0, such as in I, deshields the <u>syn</u>-axial protons (H₁ and H₅) by <u>ca</u> 0.5 ppm relative to isomer II, where the S = 0 is equatorial. In I and II, the large vicinal couplings (J₁₃ and J₃₅) indicate chair conformations, since these are typical couplings between axial protons. Also, the small couplings between potentially e-e and a-e protons are consistent with chairs. The large negative geminal J's are normal, J₄₅ being more positive due to the influence of the adjacent oxygen atom. ¹³C shifts are presented in Table 3. The upfield shifts of 9.9 and 6.6 ppm at C-4 and C-6 of I relative to II are due to the "gauche-y" relationship⁽⁵⁾

				-	Aromatics			
Compd	<u>C-4</u>	<u>C-5</u>	<u>C-6</u>	<u>quat</u> .	<u>o</u>	<u>m</u>	p	
I	68.8	33.5	58.0	138.7	126.3	128.8	127.0	
II	78.7	31.8	64.6	138.3	126.1	128.7	128.3	

Table 3. ¹³C NMR (δ_c from TMS ± 0.1 ppm)

between the axial S = 0 and the C-4, 6 ring carbons in I. Such effects are well documented in chair conformers of thiane-oxides⁽⁶⁾ and mechylated sulfites.⁽⁵⁾ Clearly there is no need to invoke non-chairs for <u>either</u> isomer of 4-phenyltrimethylene sulfite. Findings for di- and triphenylated sulfites will be reported in a full paper.

To investigate the possibility that Albriktsen, in examining the spectrum of the neat liquid "X", was observing a polymer of our liquid isomer I, we have recorded a 60 MHz 1 H spectrum of neat I and compared it with the spectrum published earlier.⁽¹⁾ The results are drastically different and accordingly, "X" could not have been a 4-phenyltrimethylene sulphite.

References

- 1. P. Albriksten. Acta Chem. Scand. 26, 3678 (1972).
- 2. G. Wood and M. Miskow. Tet. Letters 1775 (1970).
- 3. L. Cazaux, G. Chaissaing and P. Maroni. Tet. Letters 2517 (1975).
- 4. G. Wood, G.W. Buchanan and M.H. Miskow. Can. J. Chem. <u>50</u>, 521 (1972).
- 5. G.W. Buchanan, J.B. Stothers and G. Wood. Can. J. Chem. <u>51</u>, 3746 (1973).
- 6. G.W. Buchanan and T. Durst. Tet. Letters 1683 (1975).